《相对论》TXT

《相对论》TXT

论动体的电动力学

爱因斯坦

根据范岱年、赵中立、许良英编译《爱因斯坦文集》编辑

大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导休和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。

堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度 C 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。

这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。

一 运动学部分

§1、同时性的定义

设有一个牛顿力学方程在其中有效的坐标系。为了使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。

如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。

如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到 7 同火车的到达是同时的事件。”

也许有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了;但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时间,那么这徉的定义就不够了。

当然,我们对于用如下的办法来测定事件的时间也许会成到满意,那就是让观察者同表一起处于坐标的原点上,而当每一个表明事件发生的光信号通过空虚空间到达观察者时,他就把当时的时针位置同光到达的时间对应起来。但是这种对应关系有一个缺点,正如我们从经验中所已知道的那样,它同这个带有表的观察者所在的位置有关。通过下面的考虑,我们得到一种此较切合实际得多的测定法。

如果在空间的A点放一只钟,那么对于贴近 A处的事件的时间,A处的一个观察者能够由找出同这些事件同时出现的时针位置来加以测定,如果.又在空间的B点放一只钟——我们还要加一句,“这是一只同放在 A 处的那只完全一样的钟。” 那么,通过在 B 处的观察者,也能够求出贴近 B 处的事件的时间。但要是没有进一步的规定,就不可能把 A 处的事件同 B 处的事件在时间上进行比较;到此为止,我们只定义了“ A 时间”和“ B 时间”,但是并没有定义对于 A 和 B 是公共的“时间”。只有当我们通过定义,把光从 A 到 B 所需要的“时间”,规定为等于它从 B 到 A 所需要的“时间”,我们才能够定义 A 和 B 的公共“时间”。设在“A 时间”tA ,从 A 发出一道光线射向 B ,它在“ B 时间”, tB 。又从 B 被反射向 A ,而在“A时间”t`A回到A处。如果

tB-tA=t’A-t’B

那么这两只钟按照定义是同步的。

我们假定,这个同步性的定义是可以没有矛盾的,并且对于无论多少个点也都适用,于是下面两个关系是普遍有效的:

1 .如果在 B 处的钟同在 A 处的钟同步,那么在 A 处的钟也就同B处的钟同步。

2 .如果在 A 处的钟既同 B 处的钟,又同 C 处的钟同步的,那么, B 处同 C 处的两只钟也是相互同步的。

这样,我们借助于某些(假想的)物理经验,对于静止在不同地方的各只钟,规定了什么叫做它们是同步的,从而显然也就获得了“同时”和“时间”的定义。一个事件的“时间”,就是在这事件发生地点静止的一只钟同该事件同时的一种指示,而这只钟是同某一只特定的静止的钟同步的,而且对于一切的时间测定,也都是同这只特定的钟同步的。

根据经验,我们还把下列量值

2|AB|/(t’A-tA)=c

当作一个普适常数(光在空虚空间中的速度)。

要点是,我们用静止在静止坐标系中的钟来定义时间,由于它从属于静止的坐标系,我们把这样定义的时间叫做“静系时间”。

§2 关于长度和附间的相对性

下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们定义,如下。

1 .物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竞是用两个在互相匀速移动着的坐标系中的哪一个并无关系。

2 .任何光线在“静止的”坐标系中都是以确定的速度 c运动着,不管这道光线是由静止的还是运动的物体发射出来的。由此,得

光速=光路的路程/时间间隔

这里的“时间间隔”,是依照§1中所定义的意义来理解的。

设有一静止的刚性杆;用一根也是静止的量杆量得它的长度是l.我们现在设想这杆的轴是放在静止坐标系的 X 轴上,然后使这根杆沿着X轴向 x 增加的方向作匀速的平行移动(速度是 v )。我们现在来考查这根运动着的杆的长度,并且设想它的长度是由下面两种操作来确定的:

a )观察者同前面所给的量杆以及那根要量度的杆一道运动,并且直接用量杆同杆相叠合来量出杆的长度,正象要量的杆、观察者和量杆都处于静止时一样。

b )观察者借助于一些安置在静系中的、并且根据§1作同步运行的静止的钟,在某一特定时刻 t ,求出那根要量的杆的始末两端处于静系中的哪两个点上。用那根已经使用过的在这种情况下是静止的量杆所量得的这两点之间的距离,也是一种长度,我们可以称它为“杆的长度”。

由操作 a )求得的长度,我们可称之为“动系中杆的长度”。根据相对性原理,它必定等于静止杆的长度 l 。

由操作 b )求得的长度,我们可称之为“静系中(运动着的)杆的长度”。这种长度我们要根据我们的两条原理来加以确定,并且将会发现,它是不同于 l的。

通常所用的运动学心照不宣地假定了:用上面这两种操作所测得的长度彼此是完全相等的,或者换句话说,一个运动着的刚体,于时期 t ,在几何学关系上完全可以用静止在一定位置上的同一物体来代替。

此外,我们设想,在杆的两端(A和B),都放着一只同静系的钟同步了的钟,也就是说,这些钟在任何瞬间所报的时刻,都同它们所在地方的“静系时间”相一致;因此,这些钟也是“在静系中同步的”。

我们进一步设想,在每一只钟那里都有一位运动着的观察者同它在一起,而且他们把§1中确立起来的关于两只钟同步运行的判据应用到这两只钟上。设有一道光线在时 间tA从 A 处发出,在时间tB于 B 处被反射回,并在时间t`A返回到 A 处。考虑到光速不变原理,我们得到:

tB-tA=rAB/(c-v) 和 t’A-tB=rAB/(c+v)

此处 rAB表示运动着的杆的长度——在静系中量得的。因此,同动杆一起运动着的观察者会发现这两只钟不是同步进行的,可是处在静系中的观察者却会宣称这两只钟是同步的。

由此可见,我们不能给予同时性这概念以任何绝对的意义;两个事件,从一个坐标系看来是同时的,而从另一个相对于这个坐标系运动着的坐标系看来,它们就不能再被认为是同时的事件了。

由于牛顿定律给狭义相对论提出了困难,即任何空间位置的任何物体都要受到力的作用。因此,在整个宇宙中不存在惯性观测者。爱因斯坦为了解决这一问题又提出了广义相对论。狭义相对论最著名的推论是质能公式,它说明了质量随能量的增加而增加。它也可以用来解释核反应所释放的巨大能量,但它不是导致原子弹的诞生的原因。而广义相对论所预言的引力透镜和黑洞,与有些天文观测到的现象符合。根据质能方程,人们很容易推出 “光速是宇宙中最快速度 ”。因为,当物体达到光速时,其质量将变得无穷大,与事实不相符。然而,还有人提出,存在着两种宇宙,即 “快宇宙” 和 “慢宇宙”。所有基本粒子在快宇宙中比光速快,即快子,因此,他们所组成的物质也比光速快,反之亦然。此外,有天文学家惊人观测到超光速现象,包括星系相离的速度、类星体膨胀的虚度等等。 但是,至今没有一种说法令人信服,也没有一种说法推翻相对论。编辑本段穿越时空1905年10月,德国《物理年鉴》杂志刊登了一篇《关于运动物体的电动力学》的论文,它宣告了狭义相对论假说的问世。正是这篇看似很普通的论文,建立了全新的时空观念,并向明显简单的同时性观念提出了挑战。我们知道由爱因斯坦狭义相对论可以得出运动的物体存在时间膨胀效应。在1911年4月波隆哲学大会上,法国物理学家P.朗之万用双生子实验来质疑狭义相对论的时间膨胀效应,设想的实验是这样的:一对双胞胎,一个留在地球上,另一个乘坐火箭到太空旅行。飞行速度接近光速,在太空旅行的双胞胎中的一人回到地球时只不过两岁,而他的兄弟早已死去了,因为地球上已经过了200年了。这就是著名的双生子佯谬。这个问题简直没法回答。实际上,狭义相对论只处理匀速直线运动,而哥哥要回来必须经过一个变速运动过程,这是狭义相对论无法处理的。正在人们忙于理解狭义相对论时,爱因斯坦正在研究广义相对论。广义相对论表明,这个实验的结果是符合事实的,没有逻辑上的问题。编辑本段提出过程绝对时空观所谓时空观,即是有关时间和空间的物理性质的认识。伽利略变换是力学相对论原理的数学描述。它集中反映了经典力学的绝对时空观。1.时间间隔与惯性系的选择无关若有两事件先后发生,在两个不同的惯性系中的观测者测得的时间间隔相同。2.空间间隔也与惯性系的选择无关空间任意两点之间的距离与惯性系的选择无关。我们可以看出,在经典力学中,物体的坐标和速度是相对的,同一地点也是相对的。但时间、长度和质量这三个物理量是绝对的,同时性也是绝对的。这就是经典力学的绝对时空观。以太?十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。在十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种连续介质叫做“以太”,光线和射电讯号是在以太中的波动。完整理论需要的是仔细测量以太的弹性性质,为此,哈佛大学建立了杰弗逊实验室,整个建筑不用任何铁钉,以免干扰磁测量,然而因策划者忽视了褐红色砖头中所含大量铁,预计实验无法如期进行。到世纪之末,开始出现了和穿透一切以太的观念的偏差,如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论;如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。就此,人们发现,这是一个充满矛盾的理论。

迈克尔逊 莫雷 的实验示意图

1887年阿尔伯特·迈克尔逊和爱德华·莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对时间的概念,一切困难都可以解决,根本不需要什么以太。注:迈克耳孙-莫雷实验必须多次重复进行,道理非常简单,假设实验光波的波长为600纳米(1纳米等于10的负9次方米),那么,要获得90度的干涉相差,两列干涉波需要获得150纳米的行程差,问题是,150纳米是很小的,有什么理由保证环境背景噪声引起的仪器振动不会达到这个数量级呢?换句话说,有可能本来是有150纳米相位差的,但环境背景噪音引起的误差刚好也等于150纳米,刚好抵消才出现零结果。如果在不同时间,不同地点,用不同仪器多次重复测量的话,所有仪器的误差都不多不少刚好抵消相位差的概率就会变得极低。目前,该实验的确已经进行了非常多次,我们有信心认为仪器足够精确,这个问题可以排除。★注释:以太:由希腊学者提出,认为是光传播的介质。固定以太理论:如果光是在一种称为以太的弹性物质中的波,则在向它运动来的航天飞船上的某人(a)看来光速变得较高,而在与光同方向运动的航天飞船上的某人(b)看来光速变得较低。两个基本假设1.物理规律在所有惯性系中都具有相同的形式。2.在所有的惯性系中,光在真空中的传播速率具有相同的值C。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个假设没有抵触,就必须重新分析时间与空间的物理概念。洛伦兹变换经典力学中的速度合成法则实际依赖于如下两个假设:1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系。2.两点的空间距离与测量距离所用的尺的运动状态无关。爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等,距离也有了相对性。如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在探索普遍的自然定律方面具有非常重要的作用。时间与空间的联系此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的刚性连续时空,通常称为明可夫基里平直时空。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=MC^2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。在后来的核反应试验中证明了这一点。对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1921年把诺贝尔奖金授予爱因斯坦,也只是说“由于他对理论物理学的贡献,更由于他发现了支配光电效应的定律。”对于相对论只字未提。

建立广义相对论爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为不可能区分引力效应和非匀速运动,即任何加速和引力是等效的。他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”编辑本段实验验证1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之